Coastal Assessment Resiliency Plan

Montauk Commercial Docks Area at a Fall 2016 King Tide – J. Samuelson

"No Action"
Vulnerability
Assessment
Results

Public Meeting 1
Town of East Hampton
May 16, 2017
Samuel Merrill, Ph.D.

Resiliency Planning in East Hampton

- Comprehensive Plan
- Hamlet studies
- NYSERDA study (Dewberry)
- Coastal Assessment Resiliency Plan (CARP)

Coastal Assessment Resiliency Plan

Where are we in the process?

- Began in early 2016
- Today: Public meeting 1: Viewing modeling results for sea level rise and storm surge impacts
- Next steps:
 - Explore adaptation strategies to consider for the CARP
 - Develop adaptation strategies and conceptual designs for benefit-cost modeling
 - Model these actions then present results and discuss policy and regulatory recommendations
 - Create overall CARP document
 - Implementation (2018 and beyond)

Coastal Assessment Resiliency Plan

- Funded by a grant from New York State
 Department of State
- Vulnerability to Sea Level Rise and Surge
- Conceptual Designs for Adaptation
- Benefit Cost Analysis
- Recommendations for Operational, Policy and Regulatory Changes in Response to Potential Flooding

Points to Keep in Mind

Patterns of Vulnerability

- Different for the south and north of the Town
- Different for storm surge and sea level rise

Leading Toward Action

 Next steps will include design of adaptation actions to consider for key vulnerable areas

Key Definitions

Resiliency

The ability to bounce back after change or adversity. The capability of preparing for, responding to and recovering from difficult conditions.

100-Year Flood

A flood with a 1% probability of occurring in any given year.

Mean Sea Level Trend: Montauk, NY

The mean sea level trend is 3.21 mm/year, equivalent to 1.05 feet in 100 years.

Sea Level Rise Scenarios Applied for CARP

	2030	2050	2080	2100
Medium	6.6 inches (<i>0.6 feet</i>)	16 inches (1.3 feet)	30 inches (2.5 feet)	34 inches (2.8 feet)
High	12.4 inches (<i>1.0 feet</i>)	30 inches (2.5 feet)	58 inches (4.8 feet)	72 inches (<i>6.0 feet</i>)

Source: N.Y. Department of Environmental Conservation, Part 490, 6 NYCRR regulations

Storm Surge Vulnerability in Montauk

Study Areas

Vulnerability Assessment

- Risk Mapping
 - New York Department of State methodology
 - Shows relative level of risk between areas
- COAST approach
 - COastal Adaptation to Sea Level Rise Tool
 - Initially developed by US EPA
 - Shows potential damages to real estate
 - Allows adaptation modeling (this summer/fall)

New York DOS Method – FEMA Risk Categories

New York DOS Method – FEMA Risk Categories

Estimated Market Value at Risk*, All Study Areas

Study Areas

Estimated Market Value at Risk*: Areas 1, 2 & 9

Study Areas

Estimated Market Value at Risk*: Areas 3 & 4

Study Areas

Estimated Market Value at Risk*: Areas 5, 6 & 7

Vulnerability Assessment

- Risk Mapping Methodology from the
 - New York Department of State
 - Shows relative level of risk between areas
- COAST approach
 - COastal Adaptation to Sea Level Rise Tool
 - Initially developed by US EPA
 - Shows potential damages to real estate
 - Allows adaptation modeling (this summer/fall)

The COAST Modeling Approach

- Each year, parcels have a chance of being hit by storms of different sizes - surge heights include the FEMA 10, 50, 100 and 500-yr. storms
- Damage is based on depth-damage functions from federal standards used by multiple agencies
- Total damage is tallied from storms of all sizes in each year.
- Sea level goes up each year according to curves from NY DOS.

Limitations

- Evaluating real estate impacts only
- Not modeling:
 - Natural resources
 - Economic benefits of beaches, tourism, etc.
 - Infrastructure other than sites depicted
 - Other assets, benefits, or values

COAST Model Results

1. Parcels that may be inundated by sea level rise over time – from 2030 - 2080 (1.3 feet by 2050, 2.5 feet by either 2050 or 2080, and 4.8 feet by 2080)

Sea Level Rise Scenarios Applied for CARP

	2030	2050	2080	2100
Medium	6.6 inches (<i>0.6 feet</i>)	16 inches (1.3 feet)	30 inches (2.5 feet)	34 inches (2.8 feet)
High	12.4 inches (<i>1.0 feet</i>)	30 inches (2.5 feet)	58 inches (4.8 feet)	72 inches (<i>6.0 feet</i>)

Source: N.Y. Department of Environmental Conservation, Part 490, 6 NYCRR regulations

COAST Model Results

- 1. Parcels that may be inundated by sea level rise over time from 2030 2080 (1.3 feet by 2050, 2.5 feet by either 2050 or 2080, and 4.8 feet by 2080)
 - Acres
 - Dollars of real estate value

COAST Model Results

- 1. Parcels that may be inundated by sea level rise over time from 2030 2080 (1.3 feet by 2050, 2.5 feet by either 2050 or 2080, and 4.8 feet by 2080)
 - Acres
 - Dollars of real estate value
- 2. Spatial patterns of estimated damage from storm surge.

Study Areas

Estimated Market Value Inundated by Sea Level Rise 1.3 feet (2050) 2.5 feet (2030 or 2080) 4.8 feet (2080)

Study Areas

Acres Inundated by Sea Level Rise 1.3 feet (2050) 2.5 feet (2030 or 2080) 4.8 feet (2080)

Study Areas

Estimated Market Value Inundated by Sea Level Rise 1.3 feet (2050) 2.5 feet (2030 or 2080) 4.8 feet (2080)

Tours of the Study Areas and Results

- 1. Parcels that may be inundated by sea level rise over time (1.3 feet, 2.5 feet, and 4.8 feet)
 - Acres
 - Dollars of exposed real estate value
- 2. Spatial patterns of estimated damage from storm surge.

Patterns of Damage from a Single 100-yr. Storm

Total Damage from All Storms by 2080

Areas 1, 2 & 9: Value of Parcels Inundated by Sea Level Rise – 1.3 feet

Areas 3 & 4: Value of Parcels Inundated by Sea Level Rise – 1.3 feet

Takeaway Messages

- For sea level rise:
 - Highest inundation over time occurs on the bay side of Town (Northwest Harbor, Accabonac Harbor, and Lake Montauk North) ... in acres and in many cases, dollar value
- For storm surge, the pattern is reversed:
 - Napeague and East Hampton Village have the highest exposed dollar value, both in the short term and over the next 50 – 60 years

Critical Facilities

Critical Facilities

Montauk Airport

Montauk Electrical

Substation

East Hampton

Commercial Dock

Montauk Train Station

Montauk Commercial

Docks

Montauk Commercial Docks Area at a Fall 2016 King Tide – J. Samuelson

Takeaway Messages

Sea level rise:

- Highest inundation over time occurs on the bay side of Town (Northwest Harbor, Accabonac Harbor, and Lake Montauk North) ... in acres and in many cases, dollar value
- But for storm surge the pattern is reversed:
 - Napeague and East Hampton Village have the highest exposed dollar value
- Critical facilities:
 - Storm surge: most of these facilities are vulnerable now
 - Sea level rise: there are several decades to adapt these facilities, but if adaptation action is not taken, they can be expected to be underwater at high tide every day

Next Meeting: Strategies for Resiliency

We'll consider actions to evaluate:

- Community level: public infrastructure investment
 - Shore line barrier or augmentation
 - Road, rail, or infrastructure elevation
 - Living shorelines and open space protection
- Parcel level
 - Flood proofing (wet/dry)
 - Building elevation
- Targeted Policy Actions
 - Voluntary buyouts
 - Incentives to move buildings out of harm's way
 - Zoning in relation to properties at risk (e.g., to address building location/size/transfer of development rights)

